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We introduce some important results from the field of diophantine approxima-
tion, which asks how well a real number can be approximated by rationals or, more
formally, how large s > 0 can be for a given β ∈ R so that∣∣∣∣β − p

q

∣∣∣∣ ≤ |q|−s
has infinitely many integer solutions p, q.

Liouville’s theorem 3 is proved by a simple argument using an auxiliary polyno-
mial, this then motivates the proof of Thue’s theorem 7 which is the topic of the
next talk.

In the remainder of the talk, we look at diophantine equations and how Thue’s
theorem bounds the number of their solutions.

This talk follows the first part of [2, Chapter 16].

1 Diophantine Approximation

Proposition 1 (Dirichlet). For any irrational number β ∈ R, there are infinitely
many solutions (p, q) ∈ Z2 to the inequality∣∣∣∣β − p

q

∣∣∣∣ ≤ |q|−2
Proof. For x ∈ R, define 〈x〉 = x − bxc the fractional part of x. For given Q ∈ N,
we divide [0, 1) into Q intervals (pigeon-holes) of length 1/Q. We have Q numbers
〈β〉, 〈2β〉..., 〈Qβ〉 ∈ [0, 1), so exist 1 ≤ q1 6= q2 ≤ Q with

|〈q2β〉 − 〈q1β〉| ≤ 1/Q
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Supposing without loss of generality that 〈q2β〉 > 〈q1β〉, we have

|〈q2β〉 − 〈q1β〉| = 〈(q2 − q1)β〉 ≤ 1/Q

Setting q = q2 − q1, p = bqβc
|qβ − p| ≤ 1/Q∣∣∣∣β − p

q

∣∣∣∣ ≤ 1

qQ
≤ q−2

Q was arbitrary ⇒ infinitely many solutions (p, q) ∈ Z2 in total.

Remark 2. On the other hand, for s > 2, the setDs =
{
β ∈ R :

∣∣∣β − p
q

∣∣∣ ≤ |q|−s has ∞ solutions
}

has measure 0:

As(p, q) =

{
β ∈ [0, 1) :

∣∣∣∣β − p

q

∣∣∣∣ ≤ |q|−s} , Bs(q) =

q⋃
p=0

As(p, q)

Ds ∩ [0, 1) = lim sup
q→∞

Bs(q)

µ(As(p, q)) = 2q−s =⇒ µ(Bs(q)) ≤
q∑
p=0

2q−s ≤ 4q−s+1

∑
q

µ(Bs(q)) <∞

Then µ(Ds) = 0 by the Borel-Cantelli lemma.

Theorem 3 (Liouville, 1844). Let α ∈ R be an algebraic number of degree d > 1
over Q. Then there exists a constant C(α) > 0 such that∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α) · q−d

Proof. a) Find an auxiliary polynomial: Here we use the minimal polynomial mα

of α irreducible over the integers.

b) Vanishing at p
q
: mα irreducible, hence m(p/q) 6= 0 for any p/q ∈ Q.

c) Lower Bound: From degree d and integer coefficients, we have |m(p/q)| ≥ 1/qd
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d) Upper Bound: By Taylor’s theorem, if |α− p/q| ≤ 1 then

|m(p/q)| ≤ c(α)|α− p/q|

e) Compare Bounds: Take C(α) = min(1, c(α)−1). Conclude from c) and d).

We now have a complete picture for d = 2 but not for larger d. The proof of
Theorem 3 is a simplistic example of the method used to prove Thue’s theorem, the
topic of next week’s talk.

The following statements formalise one of the key ideas of the proof, providing
the lower bound in step c).

Definition 4. Let P (x) =
∑
ai1,...,inx

i1 · · ·xin ∈ R[x1, ..., xn] a polynomial in finitely
many variables, then we define the norm of P as

|P | = max |ai1,...,in|

Lemma 5 (Gauss). If P ∈ Z[x] satisfies P (j)(p/q) = 0 for some rational p/q in
lowest terms and every j = 0, ..., k − 1, then P (x) = (qx− p)k · P̃ (x) for P̃ ∈ Z.

In this case, if P 6= 0 then |P | ≥ |q|k.

Proof. Recall that P (p/q) = 0 ⇒ P (x) = (x − p/q)P1(x). Then if the derivative
P ′(x) = (x−p/q)P ′1(x)−P1(x) also has a root at p/q, we find P1(x) = (x−p/q)P2(x)
which implies P (x) = (x−p/q)2P̃2(x). Continuing this inductively and factoring out
qk, we get P (x) = (qx − p)kP̃ (x). It remains to show that this P̃ has integer
coefficients.

We clear denominators and factor out common divisors

P (x) =
N

M
(qx− p)P (x)

M · P (x) = N · (qx− p)P (x)

where now P (x) has coprime integer coefficients. Inspecting this modulo prime
numbers forces M = ±1 as needed.

Proposition 6. Let P (x1, x2) = P1(x1)x2 + P0(x1) ∈ Z[x1, x2] and k ≥ 2.

Suppose ∂j1P (r1, r2) := ∂j

∂xj1
P (r1, r2) = 0 for some (r1, r2) ∈ (p1/q1, p2/q2) ∈ Q2

and for all 0 ≤ j < k. then

|P | ≥ min
{

(2 degP )−1q
l−1
2

1 , q2

}
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Proof. Our assumption gives

0 = ∂j1P (r1, r2) = P
(j)
1 (r1)r2 + P

(j)
0 (r2) =

(
P

(j)
1

P
(j)
0

)
(r1) ·

(
r2
1

)

this means the vectors

(
P1

P0

)(j)

(r1) are pairwise linearly dependent, so in particular

(
P1

P0

)(j)

(r1) ·
(
−P0

P1

)(j+1)

(r1) = 0 for any 0 ≤ j ≤ l − 2

Using the chain rule for the dot product,

dj

dxj

[(
P1

P0

)
·
(
−P ′0
P ′1

)]
(r1) = 0 for any 0 ≤ j ≤ l − 2

This dot product is a polynomial in one variable with integer coefficients, so the Gauss
Lemma applies to the dot product, giving ql−11 ≤ |P1P

′
0 − P ′1P0| ≤ 2(degP )2|P |2

whenever P1P
′
0 − P ′1P0 6= 0. This then gives |P | ≥ (

√
2 degP )−1q

k−1
2

1 .
Suppose P1P

′
0 − P ′1P0 = 0. Then either P1 = 0 ⇒ |P | = |P0| ≥ qk1 by the Gauss

lemma, which satisfies our sought after bound, or(
P1

P0

)′
= 0⇒ ∃C ∈ Q : P0 = C · P1 ⇒ P (x1, x2) = (x2 + C) · P1(x1).

In this latter case, we must have either C = −r2 = −p2/q2 ⇒ |P | ≥ q2 or P
(j)
1 (r1) =

0, 0 ≤ j ≤ l − 1⇒ |P | ≥ |P1| ≥ qk1 .

Theorem 7 (Thue). Suppose β is an algebraic number of degree d ≥ 3 and let
s ≥ d+2

2
. Then there are at most finitely many solutions p/q in lowest terms satisfying∣∣∣∣β − p

q

∣∣∣∣ ≤ q−s

Remark 8. This also implies the existence of a constant C depending only on β and
s such that ∣∣∣∣β − p

q

∣∣∣∣ > C · q−s

for all integers p, q.
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Proof. Outline: Suppose we can choose good approximations p1/q1, p2/q2 with arbi-
trarily large denominators. The proof is analogous to that of Louiville’s theorem:

a) Find an auxiliary polynomial: By counting parameters, we can make sure
P ∈ Z[x1, x2] vanishes to a high order at (β, β) while controlling the degree
and norm of P .

b) Vanishing at p
q
: Show that P must also vanish at (p1/q1, p2/2) to high order.

c) Lower Bound: Proposition 6 gives a lower bound on |P |

d) Upper Bound: We get a good upper bound on |P | by the construction of P .

e) Compare Bounds: The two bounds contradict each other.

2 Number of Solutions to Diophantine Equations

Take P ∈ Z[x1, ..., xn] with degP = d. We would like to estimate the number of
integer solutions to the equation P (x) = 0. This number may be infinite, in which
case we want to estimate the number of solutions of a given magnitude, i.e.:

#{x ∈ Zn : 2s ≤ |x| < 2s+1, P (x) = 0} (1)

We have #{x ∈ Zn : 2s ≤ |x| < 2s+1} ∼ 2sn. We can make a rough guess using

|x| ∼ 2s =⇒ |P (x)| . 2sd

which implies that if P (x) behaves randomly, it should be 0 about one in 2sd of the
time. Our estimate for 1 is therefore ∼ 2ns/2ds

Guess 1. Let P ∈ Z[x1, ..., xn] with degP = d. If d ≤ n, then P (x) has infinitely
many integer solutions, the number of such solutions of size ∼ 2s is ∼ 2(n−d)s.

Guess 2. Let P ∈ Z[x1, ..., xn] with degP = d. If d > n, then P (x) has at most
finitely many solutions.

Both of these guesses are wrong. The equation

2x+ 2y − 1 = 0

contradicts the first guess while (x − y)9 − 1 = 0 contradicts the other. The sec-
ond guess also has counterexamples with irreducible polynomials: The image of a
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polynomial map such as φ(t) = (t2 + 1, t3 + t + 1) lies in the vanishing locus of an
irreducible polynomial in two variables, in this case the image of φ is contained in
the set of solutions of x3 − y2 − x2 + 2y − 1 = 0 and, of course, any t ∈ Z gives an
integer solution φ(t).

However, the following theorem, a corollary of Theorem 7, gives conditions under
which Guess 2 is correct.

Theorem 9 (Thue). Let P ∈ Z[x, y] be an irreducible homogeneous polynomial of
degree d ≥ 3 and A ∈ Z. The equation P (x, y) = A has at most finitely many integer
solutions.

Proof. Since P is homogeneous, we can divide by yd to get an equation Q(x/y) =
Ay−d. So for large |y|, we must have very small |Q(x/y)|. We want to show that
x/y has to be very close to one of the roots βj of Q. Suppose there are infinitely
many solutions {(pn, qn) : n ∈ N}, then (at least for a subsequence) qn → ∞ which
implies Q(pn/qn) = Aq−dn → 0. Factoring Q over C gives us

lim
n→∞

a

(
pn
qn
− β1

)
· · ·
(
pn
qn
− βd

)
= 0

For complex numbers βj algebraic of degree d over Q. After passing to a suitable
subsequence, we find pn/qn → βi for some i. It follows that βi ∈ R.

Since all the roots are distinct (Q irreducible), there exists C depending only on
P such that |pn/qn − βj| > C−1 for all i 6= j and sufficiently large n. Thus we have
infinitely many (pn, qn) satisfying:

aC−d+1

∣∣∣∣pnqn − βi
∣∣∣∣ ≤ ∣∣∣∣Q(pnqn

)∣∣∣∣ = |q−dn |A

A contradiction of Theorem 7.
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